Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 14(8): 544, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37612317

RESUMO

Statins are the most prescribed lipid-lowering agents worldwide. Their use is generally safe, although muscular toxicity occurs in about 1 in 10.000 patients. In this study, we explored the role of the endocannabinoid system (ECS) during muscle toxicity induced by simvastatin. In murine C2C12 myoblasts exposed to simvastatin, levels of the endocannabinoids AEA and 2-AG as well the expression of specific miRNAs (in particular miR-152) targeting the endocannabinoid CB1 gene were increased in a time-dependent manner. Rimonabant, a selective CB1 antagonist, exacerbated simvastatin-induced toxicity in myoblasts, while only a weak opposite effect was observed with ACEA and GAT211, selective orthosteric and allosteric agonists of CB1 receptor, respectively. In antagomiR152-transfected myoblasts, simvastatin toxicity was in part prevented together with the functional rescue of CB1. Further analyses revealed that simvastatin in C2C12 cells also suppresses PKC and ERK signaling pathways, which are instead activated downstream of CB1 receptor stimulation, thus adding more insight into the mechanism causing CB1 functional inactivation. Importantly, simvastatin induced similar alterations in skeletal muscles of C57BL/6 J mice and primary human myoblasts. In sum, we identified the dysregulated expression of the endocannabinoid CB1 receptor as well as the impairment of its downstream signaling pathways as a novel pathological mechanism involved in statin-induced myopathy.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , MicroRNAs , Humanos , Animais , Camundongos , Camundongos Endogâmicos C57BL , Sinvastatina/farmacologia , Endocanabinoides , Receptor CB1 de Canabinoide/genética , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Músculo Esquelético
2.
Int J Mol Sci ; 24(8)2023 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37108098

RESUMO

The remodelling of the extracellular matrix plays an important role in skeletal muscle development and regeneration. Syndecan-4 is a cell surface proteoglycan crucial for muscle differentiation. Syndecan-4-/- mice have been reported to be unable to regenerate following muscle damage. To investigate the consequences of the decreased expression of Syndecan-4, we have studied the in vivo and in vitro muscle performance and the excitation-contraction coupling machinery in young and aged Syndecan-4+/- (SDC4) mice. In vivo grip force was decreased significantly as well as the average and maximal speed of voluntary running in SDC4 mice, regardless of their age. The maximal in vitro twitch force was reduced in both EDL and soleus muscles from young and aged SDC4 mice. Ca2+ release from the sarcoplasmic reticulum decreased significantly in the FDB fibres of young SDC4 mice, while its voltage dependence was unchanged regardless of age. These findings were present in muscles from young and aged mice as well. On C2C12 murine skeletal muscle cells, we have also found altered calcium homeostasis upon Syndecan-4 silencing. The decreased expression of Syndecan-4 leads to reduced skeletal muscle performance in mice and altered motility in C2C12 myoblasts via altered calcium homeostasis. The altered muscle force performance develops at an early age and is maintained throughout the life course of the animal until old age.


Assuntos
Músculo Esquelético , Sindecana-4 , Animais , Camundongos , Cálcio/metabolismo , Contração Muscular/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Retículo Sarcoplasmático/metabolismo , Sindecana-4/genética , Sindecana-4/metabolismo
3.
Int J Mol Sci ; 23(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36555292

RESUMO

The endocannabinoid system (ECS) refers to a widespread signaling system and its alteration is implicated in a growing number of human diseases. Cannabinoid receptors (CBRs) are highly expressed in the central nervous system and many peripheral tissues. Evidence suggests that CB1Rs are expressed in human and murine skeletal muscle mainly in the cell membrane, but a subpopulation is present also in the mitochondria. However, very little is known about the latter population. To date, the connection between the function of CB1Rs and the regulation of intracellular Ca2+ signaling has not been investigated yet. Tamoxifen-inducible skeletal muscle-specific conditional CB1 knock-down (skmCB1-KD, hereafter referred to as Cre+/-) mice were used in this study for functional and morphological analysis. After confirming CB1R down-regulation on the mRNA and protein level, we performed in vitro muscle force measurements and found that peak twitch, tetanus, and fatigue were decreased significantly in Cre+/- mice. Resting intracellular calcium concentration, voltage dependence of the calcium transients as well as the activity dependent mitochondrial calcium uptake were essentially unaltered by Cnr1 gene manipulation. Nevertheless, we found striking differences in the ultrastructural architecture of the mitochondrial network of muscle tissue from the Cre+/- mice. Our results suggest a role of CB1Rs in maintaining physiological muscle function and morphology. Targeting ECS could be a potential tool in certain diseases, including muscular dystrophies where increased endocannabinoid levels have already been described.


Assuntos
Cálcio , Endocanabinoides , Receptor CB1 de Canabinoide , Animais , Camundongos , Cálcio/metabolismo , Músculo Esquelético/metabolismo , Receptor CB1 de Canabinoide/genética , Transdução de Sinais
4.
Int J Mol Sci ; 23(2)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35055102

RESUMO

Astaxanthin is a lipid-soluble carotenoid influencing lipid metabolism, body weight, and insulin sensitivity. We provide a systematic analysis of acute and chronic effects of astaxanthin on different organs. Changes by chronic astaxanthin feeding were analyzed on general metabolism, expression of regulatory proteins in the skeletal muscle, as well as changes of excitation and synaptic activity in the hypothalamic arcuate nucleus of mice. Acute responses were also tested on canine cardiac muscle and different neuronal populations of the hypothalamic arcuate nucleus in mice. Dietary astaxanthin significantly increased food intake. It also increased protein levels affecting glucose metabolism and fatty acid biosynthesis in skeletal muscle. Inhibitory inputs innervating neurons of the arcuate nucleus regulating metabolism and food intake were strengthened by both acute and chronic astaxanthin treatment. Astaxanthin moderately shortened cardiac action potentials, depressed their plateau potential, and reduced the maximal rate of depolarization. Based on its complex actions on metabolism and food intake, our data support the previous findings that astaxanthin is suitable for supplementing the diet of patients with disturbances in energy homeostasis.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Anabolizantes/farmacologia , Metabolismo Energético/efeitos dos fármacos , Animais , Cães , Ingestão de Alimentos/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Especificidade de Órgãos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Xantofilas/farmacologia
5.
Antioxidants (Basel) ; 10(9)2021 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-34573047

RESUMO

Aging and frailty are associated with a decline in muscle force generation, which is a direct consequence of reduced muscle quantity and quality. Among the leading contributors to aging is the generation of reactive oxygen species, the byproducts of terminal oxidation. Their negative effects can be moderated via antioxidant supplementation. Krill oil and astaxanthin (AX) are nutraceuticals with a variety of health promoting, geroprotective, anti-inflammatory, anti-diabetic and anti-fatigue effects. In this work, we examined the functional effects of these two nutraceutical agents supplemented via pelleted chow in aging mice by examining in vivo and in vitro skeletal muscle function, along with aspects of intracellular and mitochondrial calcium homeostasis, as well as cognition and spatial memory. AX diet regimen limited weight gain compared to the control group; however, this phenomenon was not accompanied by muscle tissue mass decline. On the other hand, both AX and krill oil supplementation increased force production without altering calcium homeostasis during excitation-contraction coupling mechanism or mitochondrial calcium uptake processes. We also provide evidence of improved spatial memory and learning ability in aging mice because of krill oil supplementation. Taken together, our data favors the application of antioxidant nutraceuticals as geroprotectors to improve cognition and healthy aging by virtue of improved skeletal muscle force production.

6.
Int J Mol Sci ; 21(23)2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33255644

RESUMO

Muscular dystrophies are a group of more than 160 different human neuromuscular disorders characterized by a progressive deterioration of muscle mass and strength. The causes, symptoms, age of onset, severity, and progression vary depending on the exact time point of diagnosis and the entity. Congenital myopathies are rare muscle diseases mostly present at birth that result from genetic defects. There are no known cures for congenital myopathies; however, recent advances in gene therapy are promising tools in providing treatment. This review gives an overview of the mouse models used to investigate the most common muscular dystrophies and congenital myopathies with emphasis on their potentials and limitations in respect to human applications.


Assuntos
Terapia Genética , Camundongos Transgênicos/genética , Distrofias Musculares/genética , Miopatias Congênitas Estruturais/genética , Animais , Modelos Animais de Doenças , Progressão da Doença , Humanos , Camundongos , Distrofias Musculares/patologia , Distrofias Musculares/terapia , Miopatias Congênitas Estruturais/patologia , Miopatias Congênitas Estruturais/terapia
7.
Antioxidants (Basel) ; 9(2)2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31979219

RESUMO

BACKGROUND: Astaxanthin (AX) a marine carotenoid is a powerful natural antioxidant which protects against oxidative stress and improves muscle performance. Retinol and its derivatives were described to affect lipid and energy metabolism. Up to date, the effects of AX and retinol on excitation-contraction coupling (ECC) in skeletal muscle are poorly described. METHODS: 18 C57Bl6 mice were divided into two groups: Control and AX supplemented in rodent chow for 4 weeks (AstaReal A1010). In vivo and in vitro force and intracellular calcium homeostasis was studied. In some experiments acute treatment with retinol was employed. RESULTS: The voltage activation of calcium transients (V50) were investigated in single flexor digitorum brevis isolated fibers under patch clamp and no significant changes were found following AX supplementation. Retinol shifted V50 towards more positive values and decreased the peak F/F0 of the calcium transients. The amplitude of tetani in the extensor digitorum longus was significantly higher in AX than in control group. Lastly, the mitochondrial calcium uptake was found to be less prominent in AX. CONCLUSION: AX supplementation increases in vitro tetanic force without affecting ECC and exerts a protecting effect on the mitochondria. Retinol treatment has an inhibitory effect on ECC in skeletal muscle.

8.
Front Physiol ; 11: 601090, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33408641

RESUMO

In mice a naturally occurring 12-bp deletion in the myostatin gene is considered responsible for the compact phenotype (MstnCmpt-dl1Abc, Cmpt) labeled by a tremendous increase in body weight along with signs of muscle weakness, easier fatigability, decreased Orai1 expression and store operated calcium entry (SOCE). Here, on the one hand, Cmpt fibers were reconstructed with venus-Orai1 but this failed to restore SOCE. On the other hand, the endogenous Orai1 was silenced in fibers from wild type C57Bl6 mice which resulted in ∼70% of Orai1 being silenced in whole muscle homogenates as confirmed by Western blot, accompanied by an inhibitory effect on the voltage dependence of SR calcium release that manifested in a slight shift toward more positive potential values. This maneuver completely hampered SOCE. Our observations are consistent with the idea that Orai1 channels are present in distinct pools responsible for either a rapid refilling of the SR terminal cisternae connected to each voltage-activated calcium transient, or a slow SOCE associated with an overall depletion of calcium in the SR lumen. Furthermore, when Cmpt cells were loaded with the mitochondrial membrane potential sensitive dye TMRE, fiber segments with depolarized mitochondria were identified covering on average 26.5 ± 1.5% of the fiber area. These defective areas were located around the neuromuscular junction and displayed significantly smaller calcium transients. The ultrastructural analysis of the Cmpt fibers revealed changes in the mitochondrial morphology. In addition, the mitochondrial calcium uptake during repetitive stimulation was higher in the Cmpt fibers. Our results favor the idea that reduced function and/or expression of SOCE partners (in this study Orai1) and mitochondrial defects could play an important role in muscle weakness and degeneration associated with certain pathologies, perhaps including loss of function of the neuromuscular junction and aging.

9.
Oxid Med Cell Longev ; 2019: 3849692, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31814873

RESUMO

Oxidative stress is characterized by an imbalance between prooxidant and antioxidant species, leading to macromolecular damage and disruption of redox signaling and cellular control. It is a hallmark of various diseases including metabolic syndrome, chronic fatigue syndrome, neurodegenerative, cardiovascular, inflammatory, and age-related diseases. Several mitochondrial defects have been considered to contribute to the development of oxidative stress and known as the major mediators of the aging process and subsequent age-associated diseases. Thus, mitochondrial-targeted antioxidants should prevent or slow down these processes and prolong longevity. This is the reason why antioxidant treatments are extensively studied and newer and newer compounds with such an effect appear. Astaxanthin, a xanthophyll carotenoid, is the most abundant carotenoid in marine organisms and is one of the most powerful natural compounds with remarkable antioxidant activity. Here, we summarize its antioxidant targets, effects, and benefits in diseases and with aging.


Assuntos
Antioxidantes/uso terapêutico , Envelhecimento , Animais , Antioxidantes/farmacologia , Humanos , Camundongos , Estresse Oxidativo , Xantofilas/farmacologia , Xantofilas/uso terapêutico
10.
Int J Mol Sci ; 20(13)2019 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-31323924

RESUMO

Small Ankyrins (sAnk1) are muscle-specific isoforms generated by the Ank1 gene that participate in the organization of the sarcoplasmic reticulum (SR) of striated muscles. Accordingly, the volume of SR tubules localized around the myofibrils is strongly reduced in skeletal muscle fibers of 4- and 10-month-old sAnk1 knockout (KO) mice, while additional structural alterations only develop with aging. To verify whether the lack of sAnk1 also alters intracellular Ca2+ handling, cytosolic Ca2+ levels were analyzed in stimulated skeletal muscle fibers from 4- and 10-month-old sAnk1 KO mice. The SR Ca2+ content was reduced in sAnk1 KO mice regardless of age. The amplitude of the Ca2+ transients induced by depolarizing pulses was decreased in myofibers of sAnk1 KO with respect to wild type (WT) fibers, while their voltage dependence was not affected. Furthermore, analysis of spontaneous Ca2+ release events (sparks) on saponin-permeabilized muscle fibers indicated that the frequency of sparks was significantly lower in fibers from 4-month-old KO mice compared to WT. Furthermore, both the amplitude and spatial spread of sparks were significantly smaller in muscle fibers from both 4- and 10-month-old KO mice compared to WT. These data suggest that the absence of sAnk1 results in an impairment of SR Ca2+ release, likely as a consequence of a decreased Ca2+ store due to the reduction of the SR volume in sAnk1 KO muscle fibers.


Assuntos
Anquirinas/metabolismo , Cálcio/metabolismo , Músculo Esquelético/metabolismo , Retículo Sarcoplasmático/metabolismo , Animais , Anquirinas/genética , Masculino , Camundongos , Camundongos Knockout , Fibras Musculares Esqueléticas/metabolismo , Retículo Sarcoplasmático/genética
11.
Biophys J ; 113(11): 2496-2507, 2017 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-29212003

RESUMO

Store-operated Ca2+ entry (SOCE) is a Ca2+-entry process activated by the depletion of intracellular stores and has an important role in many cell types. In skeletal muscle, however, its role during physiological muscle activation has been controversial. To address this question, sarcoplasmic reticulum (SR) calcium release in a mouse strain with a naturally occurring mutation in the myostatin gene (Compact (Cmpt)) leading to a hypermuscular yet reduced muscle-force phenotype was compared to that in wild-type mice. To elicit Ca2+ release from the SR of flexor digitorum brevis (FDB) fibers, either a ryanodine receptor agonist (4-chloro-meta-cresol) or depolarizing pulses were used. In muscles from Cmpt mice, endogenous protein levels of STIM1 and Orai1 were reduced, and consequently, SOCE after 4-chloro-meta-cresol-induced store depletion was suppressed. Although the voltage dependence of SR calcium release was not statistically different between wild-type and Cmpt fibers, the amount of releasable calcium was significantly reduced in the latter, indicating a smaller SR content. To assess the immediate role of SOCE in replenishing the SR calcium store, the evolution of intracellular calcium concentration during a train of long-lasting depolarizations to a maximally activating voltage was monitored. Cmpt mice exhibited a faster decline in calcium release, suggesting a compromised ability to refill the SR. A simple model that incorporates a reduced SOCE as an important partner in regulating immediate calcium influx through the surface membrane readily accounts for the steady-state reduction in SR calcium content and its more pronounced decline after calcium release.


Assuntos
Cálcio/metabolismo , Fibras Musculares Esqueléticas/citologia , Retículo Sarcoplasmático/metabolismo , Animais , Fenômenos Eletrofisiológicos , Masculino , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/fisiologia , Mutação , Miostatina/genética
12.
Development ; 143(9): 1547-59, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-26965373

RESUMO

Skeletal muscle excitation-contraction (EC) coupling is independent of calcium influx. In fact, alternative splicing of the voltage-gated calcium channel CaV1.1 actively suppresses calcium currents in mature muscle. Whether this is necessary for normal development and function of muscle is not known. However, splicing defects that cause aberrant expression of the calcium-conducting developmental CaV1.1e splice variant correlate with muscle weakness in myotonic dystrophy. Here, we deleted CaV1.1 (Cacna1s) exon 29 in mice. These mice displayed normal overall motor performance, although grip force and voluntary running were reduced. Continued expression of the developmental CaV1.1e splice variant in adult mice caused increased calcium influx during EC coupling, altered calcium homeostasis, and spontaneous calcium sparklets in isolated muscle fibers. Contractile force was reduced and endurance enhanced. Key regulators of fiber type specification were dysregulated and the fiber type composition was shifted toward slower fibers. However, oxidative enzyme activity and mitochondrial content declined. These findings indicate that limiting calcium influx during skeletal muscle EC coupling is important for the secondary function of the calcium signal in the activity-dependent regulation of fiber type composition and to prevent muscle disease.


Assuntos
Potenciais de Ação/fisiologia , Canais de Cálcio Tipo L/genética , Acoplamento Excitação-Contração/genética , Fibras Musculares de Contração Rápida/citologia , Fibras Musculares de Contração Lenta/citologia , Debilidade Muscular/genética , Músculo Esquelético/embriologia , Processamento Alternativo/genética , Animais , Cálcio/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fibras Musculares de Contração Rápida/fisiologia , Fibras Musculares de Contração Lenta/fisiologia , Debilidade Muscular/metabolismo , Isoformas de Proteínas/genética
13.
J Physiol ; 592(6): 1353-65, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24445322

RESUMO

Myostatin, a member of the transforming growth factor ß family, is a potent negative regulator of skeletal muscle growth, as myostatin-deficient mice show a great increase in muscle mass. Yet the physical performance of these animals is reduced. As an explanation for this, alterations in the steps in excitation-contraction coupling were hypothesized and tested for in mice with the 12 bp deletion in the propeptide region of the myostatin precursor (Mstn(Cmpt-dl1Abc) or Cmpt). In voluntary wheel running, control C57BL/6 mice performed better than the mutant animals in both maximal speed and total distance covered. Despite the previously described lower specific force of Cmpt animals, the pCa-force relationship, determined on chemically permeabilized fibre segments, did not show any significant difference between the two mouse strains. While resting intracellular Ca(2+) concentration ([Ca(2+)]i) measured on single intact flexor digitorum brevis (FDB) muscle fibres using Fura-2 AM was similar to control (72.0 ± 1.7 vs. 78.1 ± 2.9 nM, n = 38 and 45), the amplitude of KCl-evoked calcium transients was smaller (360 ± 49 vs. 222 ± 45 nM, n = 22) in the mutant strain. Similar results were obtained using tetanic stimulation and Rhod-2 AM, which gave calcium transients that were smaller (2.42 ± 0.11 vs. 2.06 ± 0.10 ΔF/F0, n = 14 and 13, respectively) on Cmpt mice. Sarcoplasmic reticulum (SR) calcium release flux calculated from these transients showed a reduced peak (23.7 ± 3.0 vs. 15.8 ± 2.1 mM s(-1)) and steady level (5.7 ± 0.7 vs. 3.7 ± 0.5 mM s(-1)) with no change in the peak-to-steady ratio. The amplitude and spatial spread of calcium release events detected on permeabilized FDB fibres were also significantly smaller in mutant mice. These results suggest that reduced SR calcium release underlies the reduced muscle force in Cmpt animals.


Assuntos
Sinalização do Cálcio/genética , Hipertonia Muscular/genética , Mutação , Miostatina/genética , Animais , Sinalização do Cálcio/fisiologia , Potenciais Evocados , Acoplamento Excitação-Contração/genética , Acoplamento Excitação-Contração/fisiologia , Potenciais da Membrana , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Fibras Musculares Esqueléticas/fisiologia , Hipertonia Muscular/fisiopatologia , Miostatina/fisiologia
14.
J Physiol ; 591(2): 423-42, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23148320

RESUMO

The buffering power, B, of the sarcoplasmic reticulum (SR), ratio of the changes in total and free [Ca(2+)], was determined in fast-twitch mouse muscle cells subjected to depleting membrane depolarization. Changes in total SR [Ca(2+)] were measured integrating Ca(2+) release flux, determined with a cytosolic [Ca(2+)] monitor. Free [Ca(2+)](SR) was measured using the cameleon D4cpv-Casq1. In 34 wild-type (WT) cells average B during the depolarization (ON phase) was 157 (SEM 26), implying that of 157 ions released, 156 were bound inside the SR. B was significantly greater when BAPTA, which increases release flux, was present in the cytosol. B was greater early in the pulse - when flux was greatest - than at its end, and greater in the ON than in the OFF. In 29 Casq1-null cells, B was 40 (3.6). The difference suggests that 75% of the releasable calcium is normally bound to calsequestrin. In the nulls the difference in B between ON and OFF was less than in the WT but still significant. This difference and the associated decay in B during the ON were not artifacts of a slow SR monitor, as they were also found in the WT when [Ca(2+)](SR) was tracked with the fast dye fluo-5N. The calcium buffering power, binding capacity and non-linear binding properties of the SR measured here could be accounted for by calsequestrin at the concentration present in mammalian muscle, provided that its properties were substantially different from those found in solution. Its affinity should be higher, or K(D) lower than the conventionally accepted 1 mm; its cooperativity (n in a Hill fit) should be higher and the stoichiometry of binding should be at the higher end of the values derived in solution. The reduction in B during release might reflect changes in calsequestrin conformation upon calcium loss.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Fibras Musculares de Contração Rápida/metabolismo , Retículo Sarcoplasmático/metabolismo , Animais , Calsequestrina/genética , Calsequestrina/metabolismo , Citosol/metabolismo , Deleção de Genes , Potenciais da Membrana , Camundongos , Fibras Musculares de Contração Rápida/fisiologia , Ligação Proteica
15.
J Gen Physiol ; 138(2): 211-29, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21788610

RESUMO

Current fluorescent monitors of free [Ca(2+)] in the sarcoplasmic reticulum (SR) of skeletal muscle cells are of limited quantitative value. They provide either a nonratio signal that is difficult to calibrate and is not specific or, in the case of Forster resonant energy transfer (FRET) biosensors, a signal of small dynamic range, which may be degraded further by imperfect targeting and interference from endogenous ligands of calsequestrin. We describe a novel tool that uses the cameleon D4cpv, which has a greater dynamic range and lower susceptibility to endogenous ligands than earlier cameleons. D4cpv was targeted to the SR by fusion with the cDNA of calsequestrin 1 or a variant that binds less Ca(2+). "D4cpv-Casq1," expressed in adult mouse at concentrations up to 22 µmole/liter of muscle cell, displayed the accurate targeting of calsequestrin and stayed inside cells after permeabilization of surface and t system membranes, which confirmed its strict targeting. FRET ratio changes of D4cpv-Casq1 were calibrated inside cells, with an effective K(D) of 222 µM and a dynamic range [(R(max) - R(min))/R(min)] of 2.5, which are improvements over comparable sensors. Both the maximal ratio, R(max), and its resting value were slightly lower in areas of high expression, a variation that was inversely correlated to distance from the sites of protein synthesis. The average [Ca(2+)](SR) in 74 viable cells at rest was 416 µM. The distribution of individual ratio values was Gaussian, but that of the calculated [Ca(2+)](SR) was skewed, with a tail of very large values, up to 6 mM. Model calculations reproduce this skewness as the consequence of quantifiably small variations in biosensor performance. Local variability, a perceived weakness of biosensors, thus becomes quantifiable. It is demonstrably small in D4cpv. D4cpv-Casq1 therefore provides substantial improvements in sensitivity, specificity, and reproducibility over existing monitors of SR free Ca(2+) concentration.


Assuntos
Técnicas Biossensoriais/métodos , Cálcio/metabolismo , Calsequestrina/metabolismo , Músculo Esquelético/metabolismo , Animais , Cálcio/análise , Calsequestrina/química , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular/fisiologia , Células Cultivadas , Ligantes , Camundongos , Músculo Esquelético/química , Retículo Sarcoplasmático/metabolismo
16.
J Gen Physiol ; 138(2): 231-47, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21788611

RESUMO

The mechanisms that terminate Ca(2+) release from the sarcoplasmic reticulum are not fully understood. D4cpv-Casq1 (Sztretye et al. 2011. J. Gen. Physiol. doi:10.1085/jgp.201010591) was used in mouse skeletal muscle cells under voltage clamp to measure free Ca(2+) concentration inside the sarcoplasmic reticulum (SR), [Ca(2+)](SR), simultaneously with that in the cytosol, [Ca(2+)](c), during the response to long-lasting depolarization of the plasma membrane. The ratio of Ca(2+) release flux (derived from [Ca(2+)](c)(t)) over the gradient that drives it (essentially equal to [Ca(2+)](SR)) provided directly, for the first time, a dynamic measure of the permeability to Ca(2+) of the releasing SR membrane. During maximal depolarization, flux rapidly rises to a peak and then decays. Before 0.5 s, [Ca(2+)](SR) stabilized at ∼35% of its resting level; depletion was therefore incomplete. By 0.4 s of depolarization, the measured permeability decayed to ∼10% of maximum, indicating ryanodine receptor channel closure. Inactivation of the t tubule voltage sensor was immeasurably small by this time and thus not a significant factor in channel closure. In cells of mice null for Casq1, permeability did not decrease in the same way, indicating that calsequestrin (Casq) is essential in the mechanism of channel closure and termination of Ca(2+) release. The absence of this mechanism explains why the total amount of calcium releasable by depolarization is not greatly reduced in Casq-null muscle (Royer et al. 2010. J. Gen. Physiol. doi:10.1085/jgp.201010454). When the fast buffer BAPTA was introduced in the cytosol, release flux became more intense, and the SR emptied earlier. The consequent reduction in permeability accelerated as well, reaching comparable decay at earlier times but comparable levels of depletion. This observation indicates that [Ca(2+)](SR), sensed by Casq and transmitted to the channels presumably via connecting proteins, is determinant to cause the closure that terminates Ca(2+) release.


Assuntos
Cálcio/metabolismo , Calsequestrina/metabolismo , Permeabilidade da Membrana Celular/fisiologia , Músculo Esquelético/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Animais , Técnicas Biossensoriais/métodos , Membrana Celular/metabolismo , Citosol/metabolismo , Potenciais da Membrana/fisiologia , Camundongos , Células Musculares/metabolismo , Técnicas de Patch-Clamp/métodos
17.
J Gen Physiol ; 136(3): 325-38, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20713548

RESUMO

Contractile activation in striated muscles requires a Ca(2+) reservoir of large capacity inside the sarcoplasmic reticulum (SR), presumably the protein calsequestrin. The buffering power of calsequestrin in vitro has a paradoxical dependence on [Ca(2+)] that should be valuable for function. Here, we demonstrate that this dependence is present in living cells. Ca(2+) signals elicited by membrane depolarization under voltage clamp were compared in single skeletal fibers of wild-type (WT) and double (d) Casq-null mice, which lack both calsequestrin isoforms. In nulls, Ca(2+) release started normally, but the store depleted much more rapidly than in the WT. This deficit was reflected in the evolution of SR evacuability, E, which is directly proportional to SR Ca(2+) permeability and inversely to its Ca(2+) buffering power, B. In WT mice E starts low and increases progressively as the SR is depleted. In dCasq-nulls, E started high and decreased upon Ca(2+) depletion. An elevated E in nulls is consistent with the decrease in B expected upon deletion of calsequestrin. The different value and time course of E in cells without calsequestrin indicate that the normal evolution of E reflects loss of B upon SR Ca(2+) depletion. Decrement of B upon SR depletion was supported further. When SR calcium was reduced by exposure to low extracellular [Ca(2+)], release kinetics in the WT became similar to that in the dCasq-null. E became much higher, similar to that of null cells. These results indicate that calsequestrin not only stores Ca(2+), but also varies its affinity in ways that progressively increase the ability of the store to deliver Ca(2+) as it becomes depleted, a novel feedback mechanism of potentially valuable functional implications. The study revealed a surprisingly modest loss of Ca(2+) storage capacity in null cells, which may reflect concurrent changes, rather than detract from the physiological importance of calsequestrin.


Assuntos
Sinalização do Cálcio , Proteínas de Ligação ao Cálcio/metabolismo , Cálcio/metabolismo , Calsequestrina/metabolismo , Músculo Esquelético/metabolismo , Animais , Soluções Tampão , Proteínas de Ligação ao Cálcio/deficiência , Proteínas de Ligação ao Cálcio/genética , Calsequestrina/deficiência , Calsequestrina/genética , Cinética , Potenciais da Membrana , Camundongos , Camundongos Knockout , Microscopia Confocal , Fibras Musculares de Contração Rápida/metabolismo , Técnicas de Patch-Clamp , Retículo Sarcoplasmático/metabolismo
18.
Cell Calcium ; 46(5-6): 347-55, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19900703

RESUMO

TPEN (N,N,N',N'-tetrakis(2-pyridylmethyl)-ethylenediamine) is a membrane-permeable heavy-metal ion chelator with a dissociation constant for Ca2+ comparable to the Ca2+ concentration ([Ca2+]) within the intracellular Ca2+ stores. It has been used as modulator of intracellular heavy metals and of free intraluminal [Ca2+], without influencing the cytosolic [Ca2+] that falls in the nanomolar range. In our previous studies, we gave evidence that TPEN modifies the Ca2+ homeostasis of striated muscle independent of this buffering ability. Here we describe the direct interaction of TPEN with the ryanodine receptor (RyR) Ca2+ release channel and the sarcoplasmic reticulum (SR) Ca2+ pump (SERCA). In lipid bilayers, at negative potentials and low [Ca2+], TPEN increased the open probability of RyR, while at positive potentials it inhibited channel activity. On permeabilized skeletal muscle fibers of the frog, but not of the rat, 50 microM TPEN increased the number of spontaneous Ca2+ sparks and induced propagating events with a velocity of 273 +/- 7 microm/s. Determining the hydrolytic activity of the SR revealed that TPEN inhibits the SERCA pump, with an IC(50) = 692 +/- 62 microM and a Hill coefficient of 0.88 +/- 0.10. These findings provide experimental evidence that TPEN directly modifies both the release of Ca2+ from and its reuptake into the SR.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/fisiologia , Etilenodiaminas/metabolismo , Fibras Musculares Esqueléticas/fisiologia , Canal de Liberação de Cálcio do Receptor de Rianodina/fisiologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/fisiologia , Animais , Sinalização do Cálcio/efeitos dos fármacos , Etilenodiaminas/farmacologia , Quelantes de Ferro/metabolismo , Quelantes de Ferro/farmacologia , Potenciais da Membrana/fisiologia , Rana esculenta , Ratos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/antagonistas & inibidores
19.
ACS Chem Biol ; 4(3): 179-190, 2009 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-19193035

RESUMO

The role of calcium in signal transduction relies on the precise spatial and temporal control of its concentration. The existing means to detect fluctuations in Ca2+ concentrations with adequate temporal and spatial resolution are limited. We introduce here a method to measure Ca2+ concentrations in defined locations in living cells that is based on linking the Ca2+-sensitive dye Indo-1 to SNAP-tag fusion proteins. Fluorescence spectroscopy of SNAP-Indo-1 conjugates in vitro showed that the conjugates retained the Ca2+-sensing ability of Indo-1. In a proof-of-principle experiment, local Ca2+ sensing was demonstrated in single cells dissociated from muscle of adult mice expressing a nucleus-localized SNAP-tag fusion. Ca2+ concentrations inside nuclei of resting cells were measured by shifted excitation and emission ratioing of confocal microscopic images of fluorescence. After permeabilizing the plasma membrane, changes in the bathing solution induced corresponding changes in nuclear [Ca2+] that were readily detected and used for a preliminary calibration of the technique. This work thus demonstrates the synthesis and application of SNAP-tag-based Ca2+ indicators that combine the spatial specificity of genetically encoded calcium indicators with the advantageous spectroscopic properties of synthetic indicators.


Assuntos
Cálcio/análise , Corantes Fluorescentes/química , Indóis/química , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Animais , Cálcio/metabolismo , Núcleo Celular/metabolismo , Corantes Fluorescentes/síntese química , Guanina/análogos & derivados , Guanina/química , Guanina/metabolismo , Camundongos , Microscopia de Fluorescência , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , O(6)-Metilguanina-DNA Metiltransferase/química , O(6)-Metilguanina-DNA Metiltransferase/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética
20.
J Physiol ; 586(23): 5803-18, 2008 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-18845610

RESUMO

The 95 kDa triadin (Trisk 95), an integral protein of the sarcoplasmic reticular membrane in skeletal muscle, interacts with both the ryanodine receptor (RyR) and calsequestrin. While its role in the regulation of calcium homeostasis has been extensively studied, data are not available on whether the overexpression or the interference with the expression of Trisk 95 would affect calcium sparks the localized events of calcium release (LCRE). In the present study LCRE and calcium transients were studied using laser scanning confocal microscopy on C2C12 cells and on primary cultures of skeletal muscle. Liposome- or adenovirus-mediated Trisk 95 overexpression and shRNA interference with triadin translation were used to modify the level of the protein. Stable overexpression in C2C12 cells significantly decreased the amplitude and frequency of calcium sparks, and the frequency of embers. In line with these observations, depolarization-evoked calcium transients were also suppressed. Similarly, adenoviral transfection of Trisk 95 into cultured mouse skeletal muscle cells significantly decreased both the frequency and amplitude of spontaneous global calcium transients. Inhibition of endogenous triadin expression by RNA interference caused opposite effects. Primary cultures of rat skeletal muscle cells expressing endogenous Trisk 95 readily generated spontaneous calcium transients but rarely produced calcium sparks. Their transfection with specific shRNA sequence significantly reduced the triadin-specific immunoreactivity. Functional experiments on these cells revealed that while caffeine-evoked calcium transients were reduced, LCRE appeared with higher frequency. These results suggest that Trisk 95 negatively regulates RyR function by suppressing localized calcium release events and global calcium signals in cultured muscle cells.


Assuntos
Sinalização do Cálcio/fisiologia , Proteínas de Transporte/fisiologia , Proteínas Musculares/fisiologia , Animais , Cafeína/farmacologia , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Proteínas de Transporte/genética , Linhagem Celular , Células Cultivadas , Estimulação Elétrica , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Endogâmicos , Microscopia Confocal , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/genética , Cloreto de Potássio/farmacologia , Interferência de RNA , Ratos , Ratos Endogâmicos , Retículo Sarcoplasmático/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...